Analytical Methods for the Study of Trace Elements in Geologic Materials

> Robert B. Finkelman University of Texas at Dallas Rbf@usgs.gov

Types of Geologic Samples

- Rocks
- Soil
- Stream sediments
- Water
- Air borne dust

SAMPLE COLLECTION

•Coal

-Cores

-Channels

-Grab

-Continuous samplers

-Power plant feed

-Washed

- -Fines, coarse, midlings, rejects
- -Fly ash, bottom ash, FGD

-Etc.

Sample Handling

Prevent oxidation

• Minimize moisture loss

Avoid Contamination

Analytical Methods for Characterizing Geologic Materials

Chemical Analysis

*Bulk Sample

-Inductively coupled Plasma (ICP) AES & MS

-Instrumental neutron Activation analysis (INAA)

-X-ray fluorescence (XRF)

-Atomic Absorption Spectroscopy (AAS)

*Micobeam

-Electron microprobe

-Scanning electron microscope

-Ion microprobe

-Laser mass analyzer

Summary of Some of the Characteristics of the Trace Element Analysis Techniques

	Instrument	Detection	Spectral	Matrix	Multi-	Sample
Technique	Price ^a	Limits ^b	Interference	Effects	elemental	Туре
INAA	+++	0.001-1	low	low	yes	solid
ED-XRF	+	1-10	high	medium	yes	solid
WD-XRF	++	0.1-1	low	medium	yes	solid
PIXE	+++	1-10	high	medium	yes	solid
ICP-AES	+ to ++	1-30	high	medium	yes	liquid
ETA-AAS	+	0.01-0.2	medium	high	no	liquid
ICP-MS	++ to +++	0.03-0.1	high	high	yes	liquid

 a^{a} + less than \$100,000 to \$250,000; +++ more than \$250,000.

^{*b*} μ g/g for solid sample type; ng/ml for liquid sample type

Detection Limits (in µg/g solid sample)							
Element	INAA	ED-XRF ^a	PIXE ^a	ICP-AES ^b	ETA-AAS ^b	ICP-MS ^b	
V	0.03	20	1.3	3.5	0.2	0.03	
Cr	0.03	16	0.8	4	0.01	0.06	
Mn	0.001	12	0.6	0.95	0.01	0.10	
Fe	6	12	0.5	3	0.02		
Ni	3	5	0.4	6.5	0.2	0.10	
Cu	0.03	6	0.3	3.5	0.02	0.32	
Zn	0.3	5	0.3	1.2	0.001	0.21	
As	0.03	4	0.4	35	0.2	0.04	
Se	0.03	2	0.4	50	0.5	0.79	
Мо	0.3	5	1.9	5.5	0.02	0.04	
Cd	0.6	6	10	1.7	0.003	0.06	
Sn	1	8	16	17	0.1	0.06	
Sb	0.01	8	14	20	0.1	0.05	
Hg	0.003	7	1.0	17	2	0.02	
Pb		8	1.1	30	0.05	0.05	

From W. Maenhaut, Nucl. Instr. and Methods B49, 518 (1990).

^a For 1 mg/cm² samples of a light element matrix.

^b For solutions containing 0.1% dissolved solid sample.

Methods for Determining Trace Elements in Coal							
and Coal By-Products							
Element	INAA	XRF ^a	ICP-AES	AAS^b	ICP-MS	CHEM	
Be			Х	Х	Х	Х	
В			Х		Х	Х	
F						Х	
Cl	Х	Х				Х	
V	Х	0	Х	Х	Х		
Cr	Х	Х	Х	Х	Х		
Со	Х	Х	Х	Х	Х		
Ni	Х	Х	Х	Х	Х		
Cu	0	Х	Х	Х	Х		
Zn	Х	Х	Х	Х	Х		
As	Х	Х	0	Х	Х		
Se	Х	0	Х	Х	Х		
Мо	Х	Х	Х	Х	Х		
Cd		0	0	Х	Х		
Sb	Х	0	Х	Х	Х		
Ва	Х	Х	Х	Х	Х		
Hg	0	0	0	Х	Х		
Pb		Х	Х	Х	Х		

X-generally suitable

O-limited by sensitivity or interference

-- -generally unsuitable

^a Includes ED-XRF, WD-XRF, or PIXE

^b Includes F-AAS, ETA-AAS, or CV-AAS

Speciation/ Modes of Occurrence

- Mineralogical characterization
- Microbeam analysis
- Wet chemistry
- Extended X-ray analysis fine structure (XAFS)

MODES OF OCCURRENCE

- Chemical form of the element
- Influences behavior during cleaning, combustion, conversion, leaching, weathering, etc.
 Determines environmental impact, technological behavior, by-product potential
- Examples:

Calcium-Calcite, organic salt, clay, sulfate, feldspar, phosphate, etc. Zinc-Sulfide (sphalerite ZnS)

Selenium in sediment profile

Scanning Electron Microscope

SEM Image of Fly Ash Particle

Electron Microprobe

Arsenic in Coal: Microanalysis

- Arsenic is a trace to minor element in pyrite; concentrations ≥ 150 ppm can be determined using the electron microprobe.
- Direct confirmation of As residence indicated by other methods, but shows concentrations vary widely within and between grains.

Arsenic-rich pyrite (to 4.5 wt. % As) with oscillatory zoning, Warrior Basin coal, Alabama. Microprobe Results Backscattered Electron Images

> *Nickel Elemental Maps*

SHRIMP-RG Ion Microprobe

Sensitive High-Resolution Ion Microprobe Reverse Geometry

- Primary beam of
 O₂⁻ or Cs⁺ ions
- Detection in the ppm range
- 10-15 micron spot size
- *determine isotope ratios*

Cr in Illite/Smectite in Coal: SHRIMP-RG Ion Microprobe

- Quantitative results for silicate-hosted Cr using Stanford-USGS SHRIMP-RG ion microprobe.
- *Concentration ranges:* $Cr = 11 \ to \ 176 \ ppm$ $Mn = 2 \ to \ 149 \ ppm$ $V = 23 \ to \ 248 \ ppm$
- Confirms leaching results and electron microprobe data.

Reflected-light image of illite band and SHRIMP-RG analysis points.

Chromium in Coal: XAFS

- *Two major forms identified:*
 - $Cr^{3+}/illite$
 - Org. associated Cr (Amorph. CrOOH)
- Chromite- Common only in coals unusually rich in Cr
- Oxidation State-Always Cr³⁺

Chromium XANES spectra and derivatives for Elkhorn/Hazard coal and separated fractions. Note that a different spectrum is obtained for each fraction indicating that a different form of chromium dominates each fraction.

Cr in Ash: XAFS

- Cr can be found as:
 - Cr/spinel associated with magnetic iron oxides.
 - Cr associated with aluminosilicate glass.
- Oxidation State of Cr
 - Often <5% Cr as Cr(VI) in bottom ash and fly-ash from bituminous coals.
 - Rarely up to 20% Cr as Cr(VI) in fly-ash from lower-rank coals.

Distribution of As-levels*

Max. arsenic is 6-8 times EPA standard.

Most problem wells are in the Marshall, but not exclusively SO. *MDCH data

Electron microprobe elemental maps for As and S show high-As (6-7 wt. %) pyrite occurs as the second of 3 pyrite generations. Arsenic-rich iron oxyhydroxides (derived from pyrite) in till containing Marshall Sandstone

Arsenic (ppm) 1 = 1,200 2 = 1,300 3 = 3,300 4 = 1,400 5 = 2,800 *6* = *1,000 Max.* = 7,300

Conclusions

- Microanalysis reveals the fine scale distribution of trace metals in coal and other geologic materials.
- This information is needed to predict the distribution and behavior of these metals in the environment, and to understand the source of metals that impact human health.

ANALYTICAL TECHNIQUES FOR MINERALOGICAL CHARACTERIZATION

X-Ray Diffraction (Semi-quant./Direct)

Scanning Electron Microscopy (Qual.-Semi-quant) +Energy Dispersive X-Ray (Indirect) Infrared Spectroscopy (Qual.-Semi-quant./Indirect) Electron Microprobe Analysis (Qual/Indirect) Transmission Electron Microscopy (Qual/Indirect) Ion Microprobe (Qual/Indirect) **Optical Microscopy (Qual-Semi-quant/Direct** Thermometric (DTA/TGA) (Semi-quant/Direct) Mossbauer Spectroscopy (Semi-quant/Direct) **Others-Raman**, **EXAFS** Normative Analysis (Quant/Indirect)

Calcium phosphate inclusions in breast tissue

Utilisation d'un marqueur pharmaceutique (MICTASOL BLEU) pour mesurer la vitesse de croissance *in vivo* d'une lithiase vésicale

Oxalates de Ca (whewellite + weddellite) (couches blanches)

Grand diam.=9,5 mm Lame mince, lumière transmise

Acide urique (couches brunes) + phosphate de Ca (couches blanches)

Grand diam.=12 mm Section polie, lumière réfléchie 1ère prise de MICTASOL BLEU: 23/7/1974 (a) Dernière prise: JUIN 1984 (b) Intervention chirurgicale: 24/7/1984 ► Vitesse de croissance radiale=5 mm/10 ans

ULB-Laboratoire de Géochimie-Minéralogie

Environmental Risk Assessment Map of the Slovak Republic

Note: number of cells is given in the brackets